SC71105.FTR

‘ —

er71105.FTR
AFRL-SR-BL-TR.og.

Research and Application in Finite Yl '

Volume Time Domain Electromagnetics
Final Technical Report

October 14, 1994 through July 14, 1997
Contract No. F49620-95-C-0006

Prepared for:

Air Force Office of Scientific Research/NM
Directorate of Mathematics and Geosciences
110 Duncan Avenue - Suite B115

Bolling AFB, DC 20332-0001

Attn: Dr. Arje Nachman

Prepared by:
W.F. Hall, Principal Investigator, A.H. Mohammadian,
C.M. Rowell and V. Shankar

Rockwell Science Center, LLC

1049 Camino Dos Rios Lo QUL Ty i EGIED &

Thousand Oaks, CA 91360
April 1998

N Rockwell 10080505 006

Science Center

Copy # 1




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate of any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headguarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reeduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1998 Final Technical Report 10/14/94-07/14/97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Research and Application in Finite Volume C F49620-95-C-0006

Time Domain Electromagnetics

4. AUTHOR(S)

Hall, W.F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION
ROCKWELL SCIENCE CENTER, LLC REPORT NUMBER
1045 CAMINO DOS RIOS
THOUSAND OAKS, CA 91360 ) SC 71105.FTR

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9. SPONSORING / MONITORING

AGENCY REPORT NUMBER
AFOSR/NM
" Directorate of Mathematics and Geosciences

110 Duncan Ave., Ste. B115
Bolling AFB, DC 20332-0001
Attn: Dr. Arje Nachman

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTING/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Arroved for public release,
PN W4 ¢ e
distiibution unlimited

13. ABSTRACT (Maximum 200 Words)

The development of an accurate time-domain solution technique for Maxwell’s equations suitable for
simulation of large radar ranges is described. This technique is a finite-volume method that maintains high-order
accuracy on unstructured meshes that can be generated automatically. It is being applied to the RAMS site at
Holloman Air Force Base, New Mexico, to help determine effects of the target support and the topography of the site

on the measured radar return at low frequencies, up to 600MHz. Especially for low-observable targets, these effects
may dominate the return.

The report includes examples of the first application of the solution technique to large, unstructured 3D grids,
as well as a determination of the fields incident on the target and its support as the solution of a large 2D scattering
problem. This 2D simulation extends over a distance of a few hundred feet in the direction of propagation and
includes topographic details of the pit in which the target support is mounted.

The simulations have been performed on massively parallel computer architectures, such as the IBM SP2,
where the solution technique exhibits essentially ideal scaling with the number of processors used.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Electromagnetics, radar cross-section (RCS), radar ranges, computational 31
methods, partial differential equations,high-performance computing, 16. PRICE CODE

finite-volume, time domain, unstructured grid

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 i Standard Form 298 (Rev, 2-89)

F-0045-SC Prescribed by ANSI Std. Z39-18 298-102



N Rockwell

Science Center

SC71105
Table of Contents

Page

T SUMMAY ...ttt e s s sasesens 1
2 INTrOdUCTION ...ttt et s 1
3 Methods, Assumptions, and Procedures............c.c.coeeiieeeeeceeeceeeeneenn, 3
3.1 The RAMS Range: Stages of Simulation........ccccvivvvrvininivincnciennennnn. 3

3.2 Numerical Method .........cccouiiieeieniieeee ettt 5

3.2.1 General ConSiderations............uuuueeeeeeeeceessuveesuseeseeessessiensssens 5

3.2.2 Finite-Volume INtegration .................ccouveeveerveecsernnecnccneencne 7

3.2.3 Time Integration AIterNALIVES ..........ccueeevveevereeesriiierireneeeneens 9

3.2.4 Taylor Series ReCONSITUCTION. .......cccuervuererereeeereeinsieneseiasness 14

3.2.5 Evaluating the Face Integrals..............oueeveeeerveeerenccrsenennnnn 16

4  Results and DISCUSSION .............cocoorieririncecce et aeaes 18
4.1 Incident Field Computation ........c.ccecevirevevuerienecerneenentenrereneneeresennenne 18

42. 3 D Scattering Simulation: ORCA Target on the RAMS Pylon.............. 21

4.3 Grid Sensitivity Test: The Business Card.........cccecveverceevirveeneneneeneennene. 24

B CONCIUSIONS ...ttt re b n e e 26
B REFEIrENCES ......oooooeeeeeceeeeeeeeeeee e 27

Preceding Page Blank
11



N Roclawell

Science Center

SC71105
List of Figures
1 Profile of the RAMS shadow-plane range near the target. The upper flat
section is inclined about 1.4 degrees from the horizontal...........cccoccevvirnincicninnnne. 3

2 2D idealization of the RAMS site showing a plane wave scattering off the
upper half-plane and the reflection of this solution in the ground plane. The insert
shows a top view of the ridge profile and its orientation with respect to the line of
sight between the radar and the target.......c.ccovveniiiiiininiiciniici e 4

3 Unstructured triangular grid in the vicinity of the diffraction ridge..........cccecevueunens 20
4 Snapshot of the numerically generated diffracted electric field, which

modifies the two half-plane solutions to produce the wave incident on the

target and itS SUPPOLT......ccccecvercverrueeruceririnnenne ettt ettt ssn s aene s 21
5  Snapshot of the total electric field for the same conditions as in Fig. 4.................... 21
6 ORCA and pylon 3D gridding: a) ORCA/pylon geometry; b) Surface grid on

ORCA and pylon; ¢) The triangular grid on the symmetry plane behind the

pylon; d) Symmetry plane grid near the ridge ..o, 23

7  Scattered E field (component parallel to ridge line) within the shadow pit at
131 MHz for H-polarized inCident Wave..........ccccovvvvieiiviiniriricinniecienienie s 24

8  Total E field (component parallel to ridge line) within the shadow pit at
131 MHz for H-polarized inCident Wave..........cccceevvvrvvirminiicniiiniinicnncsceeeissseenenes 24

9  Grid Insensitivity of UPRCS: Comparison of business card RCS results for an
unstructured and a structured grid with range measurements..........cccoceevveneciinnenns - 25

iv



N Rockwell

Science Center
SC71105

1. Summary

This final technical report summarizes the results of research performed under Air Force
Contract No. F49620-95-C-0006 to develop the capability for accurate simulation of the RCS
measurement process on high-quality radar ranges, and specifically for the RAMS shadow-
plane range at Holloman Air Force Base, New Mexico. The general goal of such simulations is
to determine the magnitude of effects due to the range and the target support on the
measurements, and to evaluate modifications to the range design that can alleviate such effects.
An approach has been developed that allows detailed simulations to be performed on existing

massively parallel computers for the RAMS range at radar frequencies up to 600 MHz.

One paper was published, one has been submitted for publication, and four technical
conference presentations were made during this effort. Extensive 2D simulations of a shadow
plane range were performed using a range profile derived from a topographic map of the
RAMS site provided by the 46" Test Group at Holloman Air Force Base. The first 3D
simulations of a low-observable target on a pylon in the RAMS shadow pit were carried out
using a new unstructured-grid time-domain integration scheme developed as part of this

research.

It is anticipated that significant applications of this work will be made in the near future
to support redesign and upgrades for RAMS. Applications to other radar ranges should also be

pursued.

2. Introduction

The large size of far-field radar ranges poses a serious problem for any numerical
method that seeks an accurate solution to Maxwell’s equations for the fields scattered back to
the radar from the vicinity of the target and its supporting structure. Even compact ranges are

typically an order of magnitude larger in every dimension than the targets they measure, so that
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the number of unknowns required for direct numerical solution is two to three orders of
magnitude larger than that for the target alone. Since numerical techniques have only recently
advanced to the point where the radar cross-section (RCS) of an isolated low-observable (LO)
aircraft can be accurately computed at wavelengths shorter than one meter, it is clear that a

considerable improvement in solution methods will be required.

The approach taken in the current effort treats separately the processes of radiation from
the sourcé radar, propagation over the range, scattering from the neighborhood of the target,
and propagation back to the radar. A unique, general 3D solver for Maxwell’s equations in the
time domain has been developed to determine the scattered fields. This solver is almost ideally
suited for massively parallel computing platforms, exhibiting linear speedup over two orders of

magnitude in the number of processors used.

The specific application driving this research has been the continuing effort to improve
the capabilities of the RAMS radar range at Holloman Air Force Base in New Mexico.
Especially for low-observable (LO) targets at frequencies below 600 MHz, there is concern that
interactions among the target, its support, and the surrounding range modify the target return to
a significant extent. T6 address this concern, the 46" Test Group at Holloman is pursuing a

number of experimental approaches, including the use of a specially-designed LO target.

Numerical simulation of the range offers a way to compare the benefits of these
different approaches, and to explore effects within a wide range of experimentally accessible
conditions. Quantitative studies can reveal the best directions for redesign of the target support

or the presence of unwanted effects due to modifications of the range profile.

The particular approach developed in the research .reported here employs explicit time
integration in a finite-volume framework for an unstructured grid [1]. This method, which

draws heavily on the foundations of similar techniques current in computational fluid
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dynamics, is an outgrowth of ongoing work at the Rockwell Science Center on time-domain

computation of radar scattering from isolated targets [2].

3. Methods, Assumptions, and Procedures

3.1 The RAMS Range: Stages of Simulation

The RAMS range uses a depression in the ground to hide the base of the target support
from the illuminating radar. As shown in Fig. 1, a steep ridge (known as the diffraction ridge)
connects the lower ground plane with the upper plane on which the illuminating radar sits. This
ridge is horizontal, but inclined about 70 degrees from the line of sight between the radar and

the target. Thus, the simulation of ridge effects is inherently three-dimensional.

Main Pylon
2t N
—— Yy Difraction Ridge
25% Slope N S
!

Shadow Region
44.8 ft /

Roof

) o

196.6 ft
2305 ft -

279.4 1 -

Fig. 1. Profile of the RAMS shadow-plane range near the target. The upper flat section is
inclined about 1.4 degrees from the horizontal.

The simulation of the ridge, the depression, the target support, and the target has been
divided into two stages. In the first stage, the modifications of the incident plane wave by the

ridge profile are determined, while in the second stage, this modified incident wave is scattered
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off the target and its support. The resulting surface currents on the range, the target, and the
support are then used to calculate the radar return.

The first stage simulation uses a dense, relatively uniform 2D grid between the ridge
and the location of the target support in order to minimize any numerical damping of the waves
that diffract off the ridge and illuminate the target and its support. The target and support are
not included in the simulation, but the field values at their location are stored for use in the

second stage.

The incident field input for the first stage simulation is constructed from the
Sommerfeld half-plane solution for the upper ground plane, and for its reflection in the lower
ground plane, as sketched in Fig. 2. Subtracting these two fields from the total field restricts the
source currents for the remainder to the near vicinity of the ridge, where they can be accurately
resolved by the grid. At the boundary of the computational domain, this remainder field is an
outgoing wave, so reflections from this boundary are minimized by the methods developed for
pure scattering problems: stretching of the grid near this boundary and zeroing of the
combination of field components that represents waves incoming along the normal to the

boundary surface [2].

3D Incident Field:
Half-Plane over Ground Plane Fig. 2. 2D idealization of
el 7 "Edge-diffracted Wave the RAMS site shoyvmg a
T plane wave scattering off
"x\_:‘/\/’: the upper half-plane and
S _Ridge Profile the reflection of this
T~ solution in the ground
Ground Plane plane. The insert shows a
top view of the ridge
profile and its orientation
------------------------------ RAMS Top View with respect to the line of
Reflected Ridge Plane sight between the radar
Target and the target.
- . N
Ridge
Line
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For the second stage of the simulation, a 3D grid clustered about the target and its
support is constructed. Although a portion of the ridge is included in the grid, it is assumed that
one can neglect the secondary illumination of the target by waves scattered from the target to
the ridge and back. The computed values of this minor contribution will be weakened by the
stretching of the grid away from the target. The current sources for the fields scattered by the
target and its support will be strong only on the target and support and around the base of the

support, where the grid is clustered.

This two-stage strategy greatly reduces the number of grid cells needed to do accurate
range simulations. The 2D grid, which at 600 MHz extends for perhaps 150 wavelengths along
the ground plane and 100 wavelengths vertically, should require at most a few million grid cells
to obtain good accuracy in the fields on the target. The 3D grid, due to clustering around the
target, is of the same order. These simulations can be run efficiently on 128 nodes of the IBM

SP2 or any comparable parallel architecture.

3.2 Numerical Method
3.2.1 General Considerations

A principal objective of this research effort is to extend the capability for numerical
solution of Maxwell’s equations through the development of more efficient integration
algorithms, and specifically algorithms that are robust and accurate on automatically-generated
unstructured grids. Gridding is a major issue: the application of numerical methods to scattering
from complex targets has been seriously restricted by the magnitude of the effort that is
required to develop a discretization of the geometry compatible with the numerical method that
adequately resolves the significant features of the true solution without creating a numerical

problem that exceeds the available memory or CPU time.

A Cartesian discretization is trivial to create, but it replaces the actual target boundary
with a stair-cased surface that impacts solution accuracy in ways that are difficult to analyze.

Also, the number of Cartesian cells in the grid scales with the highest resolution required on (or
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inside) the target, so that electrically large problems incorporating fine detail are beyond the
reach of today’s massively parallel computers. Despite these limitations, it is the basis for the
most widely exploited time-domain solution method in electromagnetics, the Yee algorithm [3].
This algorithm uses two interpenetrating grids in space, one each for the electric and magnetic
fields, and staggers the field unknowns in time, advancing the solution by the “leapfrog”

approach.

Generalizations of the Yee algorithm to non-Cartesian grids have been implemented for
various types of problems [4-6]. However, the major advantage of simplicity in defining the
grid is lost, while a theoretical basis for analyzing the stability and accuracy of these schemes
has yet to be developed. Numerical experiment is required to verify that the solution is not too
sensitivc;, to details of the grid, so that gridding once again presents a significant bottleneck in

the use of these methods.

A quite different approach to the time integration of partial differential equations has
been pursued in computational fluid dynamics (CFD). Flow around an obstacle is discretized on
a single volume grid, fitted to the body surface and expanding in cell size toward the outer
boundary of the computational domain, where an appropriate free-stream condition is imposed.
- (An overlapping grid may also be defined to simplify the propagation of information from one
densely-gridded region to another.) Originally developed for grids consisting of collections of
distorted Cartesian blocks, these methods have in recent years been extended to unstructured
grids [7-9].

The present work is based largely on the ideas behind the CFD approach to time
integration on arbitrary grids. The primary difference in emphasis is that time accuracy is a
major requirement in integrating Maxwell’s equations, while often only steady-state solution
properties are sought in CFD. Propagating waves accurately between different parts of a target

is a serious concern in computing the radar cross-section (RCS) of complex targets. It shares
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many features with the problem of aero-acoustics in CFD, as has been recognized by Roe and

his collaborators [10].

Methods for the automatic generation of unstructured grids have primarily been
developed to support the finite-element solution technique, which is widely popular in
structural mechanics [11]. This method now has a firm mathematical basis, and it is being
applied to both fluid dynamics and electromagnetics in a variety of contexts. While recent
studies of time-accurate integration for electromagnetics are promising [11,12], the sensitivity
of the finite-element technique to irregularities in the grid remains to be established for wave
propagation. It is an unfortunate feature of the automatic generation methods that many grid
cells are created having extreme aspect ratios among the edge lengths of the cell, and such

irregular cells are often found near the target surfaces.

The family of time integration methods developed in the present work can be considered
as finite-volume schemes, in the sense that the basic unknowns represent averages of the
continuum solution over each cell in the grid. To advance these unknowns to the next time
level, approximations for the solution at the cell boundary are formed from the neighbor cell
averages, and these approximations are integrated in a manner consistent with the underlying
partial differential equation to give an estimate for the time increment in each unknown.
Predictor-corrector or Runge-Kutta schemes are then used to combine various estimates in such
a way that the desired degree of accuracy in both time and space is maintained in the final

update.

A preliminary study has been made of the accuracy and stability properties of these
methods for unstructured grids [13]. Results for one spatial dimension indicate that good wave
propagation characteristics are achievable at moderate average spatial resolution on periodic
grids that stretch and compress by a factor of four or more. Numerical experiments in two and
three dimensions confirm these observations, and recent results included in this report show

that grid sensitivity has been greatly reduced.
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3.2.2 Finite-Volume Integration

Maxwell’s curl equations for the electromagnetic fields in a material medium can be
written in SI notation as either local first-order partial differential equations or as integrals over

an arbitrary volume V bounded by a regular surface oV:

Differential Form Volume Integral Form
OB/ot = -VxE , (1a) d[IVB dVydt=- Iav n x E dS, (1c)
oD/6t = VxH - J (1b) d[f,D dVJ/dt = [qymxHdS - [ dv, (1d)

where B is the magnetic induction, D is the electric displacement, E is the electric field, H is the
magnetic field, J is the electric current, and n is the outward-pointing unit normal to dV. These
equations are supplemented by the conditions V-B = 0 and V-D = p , where the electric charge
density p obeys the basic conservation law 8p/6t = -VJ. These two relations can be regarded as
initial conditions, since the curl equations guarantee that the time increments in B and D will

also satisfy the conditions.

For purposes of exposition, this section of the report considers propagation in free
space, where J vanishes, D = gE, and B = poH (where g and p, are the permittivity and
permeability of vacuum, respectively). The principles described below apply equally well to

material media, but the relations among the field variables are generally more complicated.

It is convenient to write for B and D a single “vector” Q of six field components, and to |
define a tensor flux F(E, H) in terms of which Maxwell’s equations can be written in standard
conservation form:

Conservation Form
Q=@B,D) (2a)
F =(ixE —ixH), F,=(xE-jxH), F,=(kxE,—kxH) (2b)

oQ/ot+ V-F(Q)=0 (20)




’N Rockwell

Science Center
SC71105

In this way, the set of six equations is cast into the same mathematical structure as conservation

of charge.
If one integrates 8Q/dt + V-F(Q) = 0 over each grid cell a, the result is:

dQ,/dt=-{, n-FQ(r,)ds/V,, | 3)

where Qa(t) = fa Q(r,t) dV/V o’ oo is the boundary of cell o, V o is its volume, and n is the

outward-pointing unit normal to do at r. In the present approach, this surface integral is

implemented as a sum over all faces of the cell.

Finite-volume schemes differ on how they estimate Q on each face, and on how dQ/dt is
used to update Q. Integration methods are limited by the accuracy with which the values for Q

at a cell face are reconstructed from the volume averages Q. Typical reconstruction schemes

are second-order accurate on uniform grids. They incur lower order errors on grids where cell

shapes are irregular.

3.2.3 Time Integration Alternatives

3.2.3.1 Taylor Series in Time

In developing the second-order finite difference scheme that bears their names, Lax and
Wendroff started from a Taylor series expansion of the solution u(x, t + At) in the time
increment At and replaced the repeated time derivatives of u in this expansion with space

derivatives of the flux f(u), where the basic partial differential equation had the form:
ou/ot + of(u)/ox =0. 4)

The space derivatives were then approximated by central differencing on a uniform grid. The

values u(xj, ty) could be regarded either as approximations to the point values of u or as

averages over each grid cell.
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Extension of this approach to multidimensional unstructured grids and multicomponent

unknowns Q is most naturally carried out in terms of cell averages. A Taylor series for Qq(t +

At) can be written in terms of Eq. (3) and its higher time derivatives.

Evaluating a typical term in this series involves determining values for the function Q
and its spétial derivatives up to some order at the boundary of the cell. The simplest schemes of
this type advance only the cell averages to the next time level and approximate, or

"reconstruct”, the variation of Q within a cell from these averages.

The boundary values of the reconstructed function at the interface between two cells
will in general differ, depending on from which side the interface is approached. Godunov
éuggcsted regarding this difference as a discontinuity in the actual solution, and proposed
calculating the cell averages at the next time level by appropriately propagating this

discontinuous field. This step involves solving a classical Riemann problem at each interface.

When F(Q) depends linearly on Q, as it does for Maxwell's equations in the limit of
weak fields, the Riemann problem can be solved exactly in terms of the eigenfunctions and
eigenvalues of the Jacobian matrix dF/3Q. Characteristic combinations of the elements of Q can
be identified that propagate as simple waves w(n-r + ct) across the interface. Expressing the
discontinuity in Q in terms of these waves allows the behavior of Q at the interface for
infinitesimally later times t + € to be well approximated. Because the data determining this
behavior are drawn only from the waves that propagate toward the interface from either side,

this process is called "upwinding."

3.2.3.2 Upwind Taylor Integration
It is the upwind values for Q and its derivatives that enter into the surface integrals of
Eq. (3) and its derivatives in the upwind Taylor scheme. To complete the description of the

scheme, one needs to specify how Q is to be reconstructed in each cell from its averages. The

10
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details of this procedure directly influence both the accuracy and stability of the overall

algorithm, as well as its computational efficiency.

In the upwind Lax-Wendroff scheme [1], a linear variation of the solution in each cell is
determined from upwind values for Q at the cell faces, calculated from the average values in the
two cells neighboring each interface. This procedure doubles the size of the allowable time
step, compared to the original Lax-Wendroff scheme, but it limits the accuracy of the

reconstruction and adds considerable dissipation in cells large compared to the optimum size.

An alternative reconstruction procedure commonly employed in computational - fluid
dynamics starts from the assumption that the solution is smooth over a region encompassing
many near neighbors of each cell, with continuous derivatives up to some order. The averages
over neighboring cells are then expressible in terms of these derivatives, and a collection of
these expressions is solved for the derivatives [7]. Real discontinuities in the solution, such as

shock waves, complicate the choice of neighbors and may degrade the accuracy locally.

In electromagnetics, field discontinuities occur primarily at domain boundaries and
material interfaces, the locations of which are known in advance. Appropriate boundary and
interface conditions can be derived from Maxwell's equations, and these conditions can then be
used to carry information into each cell neighboring such a boundary, provided the boundary is
smooth. Near geometrical singularities, such as cracks and edges, the representation inside the
cell may include singular functions. In regions away from physical boundaries it is feasible to
assume smooth behavior of the fields, and this is the approach that has been followed in the

current effort

3.2.3.3 Runge-Kutta Integration Schemes for Maxwell's Equations

-The dissipation that is an inescapable part of upwinding can effectively be avoided by

using central estimates for spatial derivatives. While Yee's scheme is the method of this type

11
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most well-known to the electromagnetics community, Runge-Kutta central schemes have been

widely exploited in computational fluid dynamics [9].

The essential difference between Lax-Wendroff schemes and those of Runge-Kutta type
can be understood with reference to equation (3), which expresses the time derivative of the
volume average Qq in terms of a surface integral of the flux. Rather than directly expanding
Qg in a Taylor series in time, one regards (3) as a first-order system of ordinary differential
equations for the set of unknown Qg 's. The estimate for Q(r, t) at the cell interface is expressed
as a linear combination of the surrounding Qg's, closing the system of equations, which can

now be written

d
5 Q=HO, (5)

where H is a sum over the flux from each face of the cell, and Q is the set of unknown volume
averages {Q,} . The lowest-order central estimate for Q at a cell face af is just (Qq + Qp)/2.

Note that, in contrast to the upwind Lax-Wendroff scheme, it uses no information about the

characteristics of the flux.

The Runge-Kutta schemes for integrating a first-order system of the type (5) are

explicit, single-step methods that involve constructing a number of intermediate estimates

QW) at time levels between n and n+1. Each intermediate stage has the form

QM = Q" + pyAt HAy1QOD + 24,0002 + ... ), (6)
with Q(0) = Qn | while the final update is written as

Qn+1 = Q" + AtfogHo+ atjHy + ... + aye—1H—1] , 7

where Hy = HA1QMV-D + A4,2Q(-2) + ...) and « is the number of stages in the scheme. Time
accuracy up to the order of the number of stages is obtained with appropriate conditions on the

coefficients p, A, and a.

12
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The advantage of Runge-Kutta schemes of third order and higher for wave propagation
is that they need not damp oscillatory solutions: their region of stability includes purely real

frequencies. When H is a linear function of Q, as it is for Maxwell's equations, each eigenvector

Ej, of H will satisfy (5) with a time dependence e-i®t:

-io Ey = H(E)) = AEy, , (8)

where the eigenvalues A are determined by the spatial discretization and the boundary
conditions. For a central discretization on a uniform grid with periodic boundary conditions, all
the eigenvalues are imaginary, and the eigenfunctions are in fact simple sinusoidal waves. Also,
the set of eigenvectors of H spans the complete space of solutions for Q, so that any initial

condition on Q can be represented by them.

For a general unstructured grid, the eigenvectors of H are not sinusoids, but a "central”
discretization can still produce an imaginary eigenspectrum. In such a case, the Runge-Kutta
methods will preserve the amplitude of any initial wave indefinitely. Its phase, however, will
not track that of the exact solution, except at wavelengths long compared to the size of the grid
cells, nor will the form of the wave remain sinusoidal, as the various eigenvectors composing '/
the initial wave will have different characteristic frequencies. High-order central discretizations

will, of course, preserve the phase over longer distances of propagation.

When high spatial frequencies are present in the initial conditions, for example in
scattered-field computations with vanishing initial fields except at the target boundary, the lack
of dissipation for high-frequency eigensolutions poses a problem. Although the behavior of
these solutions bears very little resemblance to exact solutions of Maxwell's equations at these
frequencies, they will continue to add unwanted structure to the solution indefinitely. To
remove this structure, filtering procedures of various forms have been applied, including the
addition of damping terms in (5) proportional to some high spatial derivative of the solution.

Filters with very little damping at long wavelengths can be implemented in this way.

13
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In the current effort a simple filter implemented by Jameson [9] that models the fourth
spatial derivatives of the solution has been implemented. On a regular grid, this filter reduces to
én estimate for V*Q, constructed in a two-step process from the neighbor volume averages. On
general grids, lower order derivatives contribute significantly to the filter. As part of developing
the new code UPRCS, the effect of this damping term on stability and accuracy has been
investigated in a series of numerical experiments, and a suitable range for its magnitude has

been determined.

The form of the fourth-order damping term, denoted D'Q, can be represented as a sum

over all faces of the parent cell o

D'Q, =K X2 [D'Qp - D’Q,l, ©

faces

where K is a constant determined by numerical experiment, typically 1/256, and D’Q is given

by

D'Qu = 2 [Qs - Qul (10)

faces

This damping term is added to each of the four stages of the Runge-Kutta time integration

procedure.

3.2.4 Taylor Series Reconstruction

Inside Cell o, the fields are assumed to be analytic functions of r:

Qr, = Qry, ) + 208, 8, 8," Qlr,y D1(x-x ) (y-y,) " (z-z,)"Nmln! 11)

Imn
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where r_ is the centroid of cell o and, e.g., 0, stands for 6/0x. At the cell surface each normal
and tangential component of these derivatives satisfies a continuity condition involving the
values of € and p on either side of the interface. Using these conditions, the variation of Q inside

each neighbor cell B can be written in terms of its expansion inside cell o.. For simplicity, this

section considers free space cells, for which there are no discontinuities in the derivatives.

Matching the volume integral of the Taylor expansion over a neighbor cell B to the

known volume average Qg gives a condition on the derivatives of Q in terms of the geometric

moments Mﬁlm“ of the cell about r :

Qu(H) = Qr,, 0 + 206, 8,™ 8, Qr,, 0] Mg ™ () /ltmint, (12)
Imn
where
Mj™2(r,) = [ (x-x ) (7-y) (22" dV/V g (13)

For any set of neighbor cells, the differences Q, - Q_ thus can be expressed in terms of
B~ a P

these moments and the derivatives of Q at r o

NORIGE 210,8," 8," Qx,, OIIME™(ry) - Mg ™(xy) Vimin! (14)
Imn

Each difference has the form of a scalar product DQ a'DMB between the unknown derivative

“vector” [6x1 6ym az“ Q a] and a moment “vector” [MBlmn -M almn] determined by the local cell

geometry. These are vectors in an infinite-dimensional space Q where the scalar product is

defined as:
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A-B=), AIMABImI; j1min (15)

Imn

The whole set of differences can be regarded as determining the_projection of DQ_ onto

the subspace of Q spanned by the collection of neighbor moment vectors {DMg}. The

components of DQ_ that are orthogonal to all the DMB’S are undetermined.
One can summarize all this by writing

5,0, 0," Q=2 A IMg™xy) - M™(r )] + R, (16)
p

B

where Ra'DMB = 0 for each neighbor B, and the coefficients A~ are linear combinations of the

differences QB - Qs found from the known scalar products as:

A =momgpM 0, - Q 1= X P10, - Q1 an
Y

In what follows, we will take R, = 0. More generally, one can choose R, to satisfy the

divergence conditions on B and D, while minimizing its total “length,” R, - Rq.

3.2.5 Evaluating the Face Integrals
At the interface o between cell o and cell B, the flux F(Q(r,t)) will use values for Q

derived from both sides, i.e., from the two derivative vectors DQ  and DQB' The specific time

integration scheme will determine a linear combination Q* of the two Taylor series to replace

Q(r,t) in the argument of F: for an upwind scheme, Q* will be the Riemann combination, while
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for centered Runge-Kutta schemes, Q* will normally be the arithmetic average. To allow for

both possibilities, we shall write Q* = caQa + cBQB with constants ¢ determined by the scheme.

Since the Maxwell flux is linear in Q, integrating F over the face afj consists of

integrating each piece of Q* separately:

I(XB n-: F(Q*) dS =

0,5 OF/OQ [ (¢ [Q(rs, ) + DQ,Dr ] +ca[Q(rp, t) + DQyDrgl}dS,  (18)
where the “vector” Dr  has components (x-x 0L)l(y-ym)m(z-zoc)n . Integrating Dr

over the face gives the “vector” of geometric moments of the face, Na[.’s (r,):

Ny ™ (6 ) =g DEG ™ dS/S 5 = [ (%) -y @ 2,)" dS/S (19)

The flux integral over face aff now reduces to

faBn-F*dS=

0,5 OF/0Q{e,[Q(Ta, D+ DQy Ny (£)] +c[Qerp, )+ DQN, g (rp)1}S 55, 20)
where the value of Q at the cell centroid can be obtained from the volume average as:
Qre, ) = Qu(t) - DQ,, - My (ry) . (21

The face integral can thus be expressed in terms of the known volume averages and the dot

products DQ o [NaB(ra) -M, (r,)] and DQB- [NaB(rB) - Mﬁ (rB)] .
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Substituting the representation for each DQ in terms of the neighbor moments and the
volume averages (from the end of Section 3.4 above), one finally obtains after some collecting

of terms:

Jup - F* dS =n g AFIOQ 2w, Q,, | (22)
Y

Y

where the weights w ap A€ calculated from the various geometric moments of the neighbor

cells and the face af.
4. Results and Discussion

4.1 Incident Field Computation

As discussed in the Introduction (Section 2), the first stage of simulation for the RAMS
site is to determine the modifications to an incident plane wave caused by the interaction of the
wave with the range profile, and specifically with the diffraction ridge leading down to the
shadow pit. Because there is essentially no variation in the profile along the direction parallel to
the ridge line, the only physically allowed variation of the fields in this direction is a phase
factor exp(ikaz), where k, is the component of the incident wave vector k parallel to the ridge |
line and z is distance along the ridge. The variation of the fields in the plane perpendicular to
the ridgeline can thus be determined separately, as the solution to a two-dimensional boundary

value problem.

To accurately simulate this problem within a finite computational domain, one must
deal explicitly with the incident plane wave and its reflections off the flat sections of the range.
These waves do not decay with distance from the ridge line, and thus will contribute
substantially at the outer boundary of the domain. One can remove these contributions from the
simulation by sﬁbtracting from the total field a solution of Maxwell’s equations that

incorporates this far-field behavior.
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The Sommerfeld solution for scattering from a conducting half-plane provides the
means to perform this subtraction, giving expressions for the fields in terms of easily evaluated
Fresnel integrals. Considering the upper flat section from the illuminating radar to the ridge as
an isolated half-plane, its solution E, and H, in the space above the ridge incorporates the
behavior of the incident wave and its reflection from the upper half-plane (at the near-grazing
incidence angles of interest for the range, the ground acts as an essentially perfect reflector).
The reflection of the incident wave from the lower flat section beyond the ridge can be obtained
from the reflection of the upper half-plane Sommerfeld solution about this lower plane, which ‘

will be denoted E, and H.

The sum of these two special solutions satisfies the perfectly conducting boundary
condition n x E = 0 on the lower flat section of the range, but n x E_does not vanish on the
upper flat section. However, this upper section lies in the shadow of the reflected half-plane
problem. As a consequence, when this sum is subtracted from the total field, E_provides a
source for the remainder, or diffracted, field on the upper half-plane that decays rapidly in

strength with distance away from the ridge.

The other, and primary, source for the diffracted fields is the ridge profile that connects
the two flat sections of the range. Here both E, and E_ provide strong, non-vanishing tangential
fields that will modify tﬁe plane-wave illumination of the target and its support. Gridding near
this ridge must be dense enough to achieve accuracy in the phase and amplitude of the
diffracted fields, and the grid between the ridge and the location of the target complex must be

capable of propagating these fields accurately to the target site.
Outside of this critical region, only outgoing waves are present in the diffracted-field

solution, and these decay in amplitude with distance from the ridge line. In the regions where

this behavior obtains, grid density can be reduced rapidly without significantly affecting the

19




/N Rockwell

Science Center
SC71105

field values computed at the target site, and the computational domain can be terminated with a

simple outgoing-wave condition on the fields.

A detail of the 2D grid near the ridge implementing these considerations is shown in
Fig. 3. The grid resolution between the ridge and the target site was nowhere less than 20 points
per wavelength at the simulation frequency of 131 MHz, which is near the lower limit of
interest for RAMS; about 260,00 triangles composed this grid. Even at this low frequency,
where diffraction effects are largest, one finds from the 2D simulation that the amplitude of the

diffracted field at the target site is less than 3 % of the incident-wave amplitude.

Fig. 3. Unstructured triangular grid in the vicinity of the diffraction ridge

The qualitative features of the diffracted-field solution are illustrated in Fig. 4. A
cylindrical wave emanating from the ridge slope and a plane wave from the flat tail of the slope
are the primary components. The strong cylindrical-wave diffraction off the top edge of the
ridge has been subtracted out as part of the Sommerfeld solution. It is added back in for the
second stage of the simulation, where the 3D scattering off the target and its support are
computed. Its effects are evident in the total-field plot of Fig. 5, where the field is seen to be

effectively nullified very close to the ridge and near the bottom of the shadow pit.
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Fig. 4. Snapshot of the numerically generated diffracted electric field, which modifies the two
half-plane solutions to produce the wave incident on the target and its support.

Fig. 5. Snapshot of the total electric field for the same conditions as in Fig. 4.

The final step of the 2D simulation is to store the amplitude and phase of the total
tangential electric field at the centroid of each surface element on the target and its supporting
pylon. These data provide the boundary values for the 3D simulation of scattering from the

whole structure.
4.2 3D Scattéring Simulation: ORCA Target on the RAMS Pylon

The purpose of these first 3D simulations is to determine the computational resources

required to obtain results that will be useful for assessing range effects on the measured RCS
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for Low Observable targets. Such a target has been designed and constructed at RATSCAT, a
modified almond shape designated the ORCA (for Optimal Radiation Calibration Apparatus). It
has a very low nose-on RCS over the band of frequencies between 120 and 600 MHz, and its
return has been measured at RAMS over this band as a function of azimuth angle at zero
- elevation (a waterline cut). Figure 6 shows the ORCA geometry and a typical surface gridding

for the target.

Various views of the unstructured 3D range grid generated for this simulation are shown
in Fig. 6. This grid includes not only the range profile, but also the ORCA and the RAMS
pylon. It was generated automatically from 2D triangular grids on each section of surface
enclosing the computational domain, including the outer boundary. A moderate resolution of
20 points per wavelength was maintained at the target edges, and the minimum resolution
between the target and the diffraction ridge was 10 points per wavelength. To simplify the grid
generation for thése tests, the vertical plane bisecting the pylon was taken as a symmetry plaﬁe,
with the ridge line reoriented perpendicular to this plane. The resulting grid contained 630,000

tetrahedral cells in the half-space to one side of the symmetry plane.

The 3D scattered-field simulations could be run efficiently on as few as 8 nodes of an
IBM SP2, and test runs were made on 8, 16, 32, and 64 nodes to verify that nearly linear
speedup could be obtained. A typical run on 64 nodes took less than an hour using the current
version of the unstructured-grid solver UPRCS. This version has not been optimizéd for the
application of modified incident fields at the conducting boundaries, and does not yet
incorporate the high-order corrections outlined in Section 3. It employs fourth-order Runge-

Kutta time integration.
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c) d)

Fig. 6. ORCA and pylon 3D gridding: a) ORCA/pylon geometry; b) Surface grid on ORCA and
pylon; ¢) The triangular grid on the symmetry plane behind the pylon; d) Symmetry
plane grid near the ridge

Results for the scattered and total electric field parallel to the ridge line are shown in
Figs. 7 and 8 for the case of a horizontally-polarized 131 MHz incident wave. The ORCA is
oriented nose-on to the illuminating radar, and the angle of incidence is chosen to place the
ORCA at the first maximum in the electric field created by the incident plane wave and its
reflection in the upper half-plane. To derive the radar return from these simulations, one must
integrate the surface currents induced on the target, pylon, and ground with the appropriate far-
field Green’s function (which includes diffraction off the edge of the upper half-plane).

However, one can already observe in these figures a definite effect of the pylon on the
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scattering, which will show up in the measured RCS. A simulation without the pylon, including
only the ORCA suspended above the shadow pit, would provide a direct measure of the impact

of the pylon on the RCS.

Fig. 7. Scattered E field (component parallel to ridge line) within the shadow pit at 131 MH.z
for H-polarized incident wave '

Fig. 8. Total E field (component parallel to ridge line) within the shadow pit at 131 MHz for H-
polarized incident wave

4.3 Grid Sensitivity Test: The Business Card

A major reduction in sensitivity of the solution to details of gridding has been
demonstrated with the new code UPRCS, which implements an unstructured-grid fourth-order
Runge-Kutta integration scheme of the type outlined in Section 3.2.3.3. In Fig. 9 results for the

RCS of a thin rectangular plate illuminated near grazing incidence are plotted for two radically

24




/N Rockwell

Science Center
SC71105

different grids: an unstructured triangular grid extruded into prisms normal to the plate, and a
structured rfectangular grid, extruded in the same way. Both grids have been clustered near the
edges of the plate to better model the singular behavior of the fields at these edges. The
dimensions of this plate are those of the Electromagnetic Code Consortium Test Case 4, and the

conditions match those of the range measurements made at NAWC-China Lake.

Business Card Flat Plate Business Curd Flat Plate
20 T T
"res.data” —— "rek.data} ——
10 “res-cemmn’--o * mhex't—e
ol ) !M n | YA
5 20 V g
a : v
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RCS computed every ten degrees and interpolated in between
H-Pol, 8=80 deg.

Fig. 9. Grid Insensitivity of UPRCS: Comparison of business card RCS results for an
unstructured and a structured grid with range measurements

Test Case 4 proved to be difficult for many of the codes tested by the Consortium,
largely because of the dominant traveling-wave contribution to the RCS near zero azimuth. To
obtain satisfactory accuracy with the original Rockwell upwind code RCS3D, the clustering of
structured cells at the plate edges had to approach 50 points per wavelength. In contrast,
UPRCS achieves the same level of agreement with no more than 30 points per wavelength. Of
more significance for this study, essentially the same results are obtained for the unstructured
triangular cross-section grid at the same level of resolution. The first Rockwell unstructured-
grid solver RCSUN (also employing a pure upwind algorithm) required about three times as

many cells to obtain a satisfactory result.
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The algorithm in UPRCS has removed two sources of error present in the earlier codes:
excessive damping and inaccurate extrapolation to the cell faces. It is anticipated that
implementing the high-order extrapolations outlined in Section 3 will further improve the
accuracy of the method at moderate resolution, and will also increase the robustness of the
results in the presence of irregular grid cells, which are a common feature of automatically-

generated grids.
5. Conclusions

The initial radar range simulation results presented here demonstrate that the methods
for time-domain integration of Maxwell’s equations have reached a stage where present-day
high performance computers can be used to explore and improve upon range design, based on
direct computation of the radar return at frequencies below 600 MHz. Opportunities for
increasing the accuracy and efficiency of the integration methods on unstructured grids have
also been identified, and these possibilities are being actively pursued. In the long term,
improvements to the basic algorithms will allow these methods to be applied to mc;re difficult
optimization scenarios and higher frequencies. In the near term, one can undertake detailed
studies of many experimental schemes for extending accurate RCS measurements to lower

frequency on existing radar ranges.
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